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Abstract

A method for respiratory frequency estimation from the

high frequency (HF) component of heart rate variabil-

ity (HRV) by means of the smoothed pseudo Wigner–Ville

(SPWVD) distribution is presented. The method is based

on maxima SPWVD detection with time-varying frequency

smoothing window length, which reduces the estimation

error, specially when the respiratory frequency is a nonlin-

ear function of time.

Evaluation is performed over HRV simulated signals

with time-varying amplitude, nonlinear HF frequency, and

20dB SNR, obtaining a mean frequency estimation error

of 0.22±2.04% (0.10±5.96 mHz). The method has been

tested on a database of ECG and respiratory signals simul-

taneously recorded during the listening of different musical

stimuli, obtaining a median respiratory frequency estima-

tion error of 0.02±1.90% (0.00±0.98 mHz) during musi-

cal stimuli and of 1.98±7.21% (35.41±33.20 mHz) during

transitions between stimuli.

1. Introduction

Respiratory sinus arrhythmia (RSA) is a modulation of

heart rate synchronous with respiration, and allows the es-

timation of respiratory frequency from the high frequency

(HF) component of the heart rate variability (HRV) sig-

nal. In non–stationary conditions the respiratory frequency

can be estimated from the maximum peak of the smoothed

pseudo Wigner–Ville distribution (SPWVD) of the HRV

signal in the HF band.

The extraction of the respiratory frequency from the

maxima of the SPWVD is challenging, since the time-

frequency (TF) smoothing used to suppress the interfer-

ence terms of the Wigner–Ville distribution introduces a

frequency estimation error which can be high in both,

mean and standard deviation [1].

A method for estimating the instantaneous frequency

(IF) of a frequency modulated (FM) signal based on the

SPWVD is presented in [1]. This method uses a frequency

smoothing window with time-varying length to resolve the

bias–variance tradeoff that appears, specially when the IF

varies nonlinearly. For each time instant the optimal fre-

quency smoothing window length depends on the IF trend

as well as on the signal amplitude and noise variance. The

assumption of constant signal amplitude made in [1] is

not suitable for respiratory frequency estimation from the

HRV signal in situations where the RSA amplitude varies

in time, such as during stress testing, tilt testing or induced

emotion experiments.

In this paper an extension of the method in [1] is pre-

sented so as to estimate the respiratory frequency from the

HRV signal, which accounts for time-varying amplitudes.

2. Methods and materials

2.1. Instantaneous frequency estimation

It is assumed that the discrete analytic version of the HF
component of the HRV signal can be modeled as [2]:

z(n) = A
HF

(n)ejφHF
(n) + v(n) (1)

where AHF(n) and φ
HF
(n) are the instantaneous amplitude

and phase of the HF component, and v(n) complex addi-

tive white gaussian noise.

The IF is estimated from the maxima of the SPWVD at

each time instant by:

F̂HF(n) =
Fs

4M
argmax

m
{Wz(n,m)} , (2)

where Fs is the sampling frequency of z(n) and Wz(n,m)
represents the SPWVD calculated as in [2]

Wz(n,m) = 2

K−1
∑

k=−K+1

|h(k)|2

⎡

⎣

N−1
∑

p=−N+1

g(p)rz(n + p, k)

⎤

⎦ e
−j2π m

M
k

m = −M + 1, ...,M (3)

where n and m denote time and frequency indexes, re-

spectively, rz(n, k) = z(n+k)z∗(n−k), g(n) and |h(k)|2
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the time and frequency smoothing windows with lengths

2N -1 and 2K-1, respectively.

The asymptotic formula for the variance, σ 2
L
, and bias,

θL, of the estimation error of the IF, are extended here to
the case in which AHF(n) in (1) is time-varying

σ
2
L(n) =

3σ2
v

2π2A2
HF
(n)

[

1 +
σ2
v

2A2
HF
(n)

]

Ts

(LTs)
3

(4)

θL ≤
1

80
sup
n

{
∣

∣

∣
F

(2)
HF

(n)
∣

∣

∣

}

(LTs)
2
,

where L=2K-1 is the frequency smoothing window

length, σ2
v is the noise variance, Ts = 1

Fs
, and F

(2)
HF (n)

represents the second derivative of FHF(n). From (4) it

can be seen that by increasing L the bias increases and

the variance decreases. The idea is to find for each time

instant n the optimal window length L which resolves

the bias-variance tradeoff, thus minimizing the frequency

mean squared error (MSE).

In [1] a suboptimal approach for estimating the optimal

window length L without needing “a priori” information

about the IF derivatives is proposed. An increasing se-

quence for L, L1 < L2 < · · · < Lj is considered, and for

each Li the IF estimate F̂HF,Li(n) and the variance σ2
Li
(n)

are computed. Assuming that Li is small enough so that

|θLi
| < κσLi

(n), the following confidence interval is de-

fined

D
Li

(n) =
{

F̂
HF,Li

(n) − 2κσ
Li

(n), F̂
HF,Li

(n) + 2κσ
Li

(n)
}

(5)

The largest L for which DLi−1 and DLi
have at least one

point in common is chosen as the optimal L, for which θ Li

and σLi
(n) have the same order. The IF estimate is initial-

ized to the shortest length L1 estimate, and then corrected

with the optimal length Li estimate. In this work a value

of κ =2 is used [1].

2.2. Instantaneous amplitude and noise es-

timation

In order to estimate σ2
Li
(n), the instantaneous amplitude

AHF(n) and noise variance σ2
v need to be estimated.

The method proposed in this paper to estimate AHF(n)
from the SPWVD comprises integration of Wz(n,m) over

a suited band and correction with a time-varying factor de-

pending on |h(k)|2.

Let us define P̂w(n) as the instantaneous power obtained

by the integration of Wz(n,m) over a band [m1, m2],

where m1 and m2 are the discrete frequency indexes cor-

responding to the minimum and maximum frequency of

F̂HF(n)±
∆f
2 , and ∆f is the frequency smoothing window

bandwidth estimated from H(m) = DFT2M

{

|h(k)|2
}

as the frequency distance between the first zero crossing at

each side of the its maximum peak.

The instantaneous power of the HF component PHF(n)
can be computed from the SPWVD as [3]

P̂HF(n) = P̂w(n)fc(n) (6)

where fc(n) is a correcting factor computed as

fc(n) =

∑M
m=−M+1 H(m)

∑m2
m=m1

H(m − mHF(n))
(7)

being mHF(n) the discrete frequency index corresponding

to FHF(n). Finally, the instantaneous amplitude is com-

puted as ÂHF(n) = P̂
1
2

HF (n).
The noise present in the signal is estimated subtracting

from z(n) the estimated HF component, ẑ(n) with ampli-

tude ÂHF(n) and frequency F̂HF(n), so that the estimated

noise signal v̂(n) accounts also for the amplitude and fre-

quency estimation errors. Finally, noise variance is com-

puted as the mean of σ̂2
v(n) =

1
2 v̂(n)v̂

∗(n).

2.3. Simulation study

A simulation study has been designed in order to eval-

uate the proposed method. The analytic version of HRV

signals have been simulated according to

z(n) = ALF(n)e
jφLF(n) + AHF(n)e

jφHF(n) + v(n) (8)

where ALF(n) and φLF(n) are the instantaneous amplitude

and phase of the LF component. The frequency of the LF

component is considered constant and equal to 0.1 Hz. The

AHF(n) and FHF(n) vary as shown in Fig.2(a) and Fig.2(c),

respectively, ALF(n) is defined to have a constant sympa-

thovagal balance Bsv = A2
LF
(n)/A2

HF
(n) of 0.5. The noise

v(n) is set to have a SNR of 20 dB at the instant of maxi-

mum instantaneous power. Since the model in (1) assumes

monocomponent signals the simulated signals are filtered

by a 9th order Butterworth band-pass filter with bandpass

[0.1–0.65] Hz.

2.4. Database

A database containing simultaneous ECG and respira-

tory signals of 58 subjects during the listening of different

musical stimuli is analyzed [4]. The database is character-

ized by the non-stationarity of both respiration and HRV

signals, as well as by nonlinear IF variations specially in

the transitions between different musical stimuli. The ECG

and respiration signals are sampled at 1000 Hz.

The HRV signal is estimated from the ECG by an al-

gorithm based on the integral pulse frequency modulation

(IPFM) model, which accounts for the presence of ectopic

beats [5]. Respiratory signals baseline wander is removed

by means of a 3rd order Butterworth high-pass filter with
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cut-off frequency 0.1 Hz. Both, respiratory and HRV sig-

nals are resampled at 4Hz and bandpass filtered, as in the

simulation study. The IF estimation on the respiratory sig-

nal is used as the reference IF for the evaluation over real

signals.

2.5. Evaluation

Evaluation over the simulated signals is done in terms

of mean and standard deviation of the FHF(n) and AHF(n)
estimation errors while over real signals it is done in terms

of median and median absolute deviation (MAD) in order

to minimize the effect of outlier estimates.

Relative values of the estimation errors are obtained

normalizing instantaneous estimation errors by the corre-

sponding instantaneous reference values.

3. Results

3.1. Simulation study

A total of 100 realizations were generated. The min-

imum root mean squared error (RMSE) is obtained with

a Hamming window for time smoothing and an exponen-

tial window for frequency smoothing with the same area

as a rectangular window of 2N -1=51 and L=31 samples,

respectively.
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e
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Figure 1. AHF estimation error on one realization of z(n).

The algorithm estimates the instantaneous amplitude

with a mean estimation error (eA ± σA) of 0.08±1.90%.

Fig.1 shows the instantaneous amplitude estimation er-

ror over a single realization, note that larger errors ap-

pear at the edges, where the autocorrelation fuctions lacks

of enough samples and on the instants where FHF(n) and

AHF(n) present higher degree of variation (see Fig.2(a) and

Fig.2(c)).

Fig.2(a) presents different estimates ÂHF. The method

proposed in this paper estimates AHF(n) quite accurately,

improving the classical estimation obtained by integrating

the SPWVD in the clasical HF band. Fig.2(b) shows a

comparison between σ2
v(n) and σ̂2

v(n), where it can be ap-

preciated a central part with high estimation error due to

estimation errors in both ÂHF(n) and F̂HF(n), which intro-

duce a phase shift into ẑ(n) as it can be appreciated in

Fig.2(d).

The IF of the simulated HRV signals is estimated with a

mean estimation error of 0.22±2.04% (0.10±5.96 mHz),

using a Hamming and rectangular window for time and
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Figure 2. (a) Different estimates Â
HF
(n), simulated (black

solid line), estimated from (6) (gray solid line) and by in-

tegration over the classical HF band (dash-dot line), (b)

comparison between σ̂2
v(n) (gray) and σ2

v(n) (black), (c)

comparison between F
HF
(n) (black) and F̂

HF
(n) (gray) and

(d) comparison between z(n) (black) and ẑ(n) (gray).
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Figure 3. IF comparison on (a) linear IF trend and (b) non-

linear IF trend between FHF (solid line), F̂HF with instanta-

neous ÂHF (dotted line) and with method in [1] (dashed

line), 2N -1 = 51.

frequency smoothing, respectively. The IF estimates were

compared to those obtained with method in [1] based on

constant amplitude estimation. Our method performs bet-

ter in both types of segment, linear and nonlinear IF trends

(see Fig.3), being more noticeable during nonlinear IF

trends.

The IF estimates were also compared to those obtained

with constant frequency smoothing window lengths (see

Fig.4, where the distribution of the FHF(n) estimation error

obtained with different methods is displayed). It can be

appreciated that introducing instantaneous amplitude esti-

mation increases the performance of the method in [1] and

of constant window lengths, since even the median error is

approximately the same for all methods, variability is in-

creased when using constant window lengths larger than

L=15 samples, and larger interquartilic ranges (IQR) are

found for lengths shorter than L=15.

3.2. Database

The algorithm proposed in this paper, using Hamming

and rectangular windows for time and frequency smooth-

ing respectively, allows the respiratory frequency estima-

tion from the HF component of HRV with a median error

of 0.02±1.90% (0±0.98 mHz) during musical stimuli and
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Figure 4. Distribution of FHF(n) estimation error on 100

realizations. VA refers to the estimation algorithm pre-

sented in this paper, CA refers to [1].

of 1.98±7.21% (35.41±33.20 mHz) during transitions be-

tween stimuli, which are highly non–stationary and non-

linear.

Fig.5 shows F̂
HF
(n) during 4 musical stimuli as well as

the reference respiratory frequency derived from the res-

piratory signal, both estimates obtained with the method

proposed here.
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Figure 5. Comparison between the reference respiratory

frequency (solid line) and F̂HF(n) (dashed line).
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Figure 6. IQR of FHF(n) median estimation error distri-

bution on real signals during (a) musical stimuli, (b) tran-

sition between stimuli, VA refers to the method presented

here and CA refers to the method in [1], 2N -1 = 51.

Fig.6 shows the IQR of FHF(n) median estimation er-

ror distribution during musical stimuly and transitions be-

tween stimuly, shorter L values have been discarded as

they did not provide sufficient smoothing. Results are

similar to those obtained in the simulation study. Using

method in [1] or constant window lengths for frequency

smoothing provides IF estimation with larger IQR than us-

ing the method proposed in this paper, being more notice-

able during transitions between stimuly where the IF vari-

ations are highly nonlinear.

4. Discussion and conclusions

In this paper a method for the estimation of the respira-

tory frequency from the HF component of HRV signal in

non–stationary conditions has been presented. The method

is based on maximum peak detection of the SPWVD

and includes time-varying frequency smoothing window

length to reduce the MSE of the estimation error, specially

when the IF variations are nonlinear, which makes the bias

high. It is based on the method proposed in [1] but includes

instantaneous amplitude estimates, reducing the MSE of

the frequency estimation errors, specially for large or non-

linear variations of the IF.

Evaluation over HRV simulated signals with time-

varying amplitude, nonlinear frequency trend, and an HRV

SNR of 20dB, yielded a mean frequency estimation error

of 0.22±2.04% (0.10±5.96 mHz). Over the database the

method obtained a median respiratory frequency estima-

tion error of 0.02±1.90% (0.00±0.977 mHz) during musi-

cal stimuli and of 1.98±7.21% (35.41±33.20 mHz) during

transitions between stimuli.

In the simulation study the IF estimation algorithm pre-

sented in this paper showed a better performance than the

method proposed in [1] or the use of constant window

lengths, even though the simulated signals used in this

paper presented sharper IF trends than those on [1], this

results are supported in the database results. Although

with some constant lengths results are similar, we have

observed that the constant length which achieves similar

results as those obtained by the algorithm proposed in this

paper, is not known “a priori” and depends on the IF vari-

ations and the time smoothing of the SPWVD.
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